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Autonomous labs accelerate discovery.
But also bring new data challenges!

Szymanski, N. J et al. An 
Autonomous Laboratory for the 
Accelerated Synthesis of Novel 
Materials. Nature 2023, 624 (7990), 
86–91. 
https://doi.org/10.1038/s41586-023-
06734-w 
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Fei, Y.; Rendy, B.; Kumar, R.; Dartsi, O.; Sahasrabuddhe, H. P.; McDermott, M. J.; Wang, Z.; Szymanski, N. J.; Walters, L. N.; 
Milsted, D.; Zeng, Y.; Jain, A.; Ceder, G. AlabOS: A Python-Based Reconfigurable Workflow Management Framework for 
Autonomous Laboratories. Digital Discovery 2024, 3 (11), 2275–2288. https://doi.org/10.1039/D4DD00129J.
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We have 3 tiers of data storage: 
document, quick-access files, and archival files

MongoDB(NoSQL) documents
(frequent access) are used to store 
metadata, analysis, and state. Fast to query 
and support flexible, nested structures. 

MongoDB GridFS 
(frequent access) are used to store 
frequently needed files, images, etc.

AWS storage 
(archival, rarely accessed) are used to store 
large raw data formats.

NoSQL à Enables fast queries by retrieving all relevant experiment data together.



Building an interactive dashboard for analysis
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More samples, more problems:
How to scale characterization?

Performed one-at-a-time, by a 
dedicated expert using their 
technical intuition, 
experience.

Goal is to reach a single 
(published) conclusion.

The challenge is to develop an 
autonomous framework for high-
throughput characterization.

This should replicate expert 
reasoning but scale to a large 
number of samples.

Traditional characterization Automated characterization
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DARA: Data-Driven XRD analysis for automated 
phase identification

To improve automated characterization in 
the A-Lab, the team has developed the 

DARA method. 

o Starting with a database of possibilities, 
the software uses a tree search method 
to traverse all the possibilities of phase 
combinations.

o A Rietveld-Refinement-based phase 
search (via BGMN) can handle complex 
patterns (e.g., with peak shifts and 
broadening)

o Multiple solutions are presented, 
ranked by a numerical figure of merit. 
Phases w/similar patterns (e.g., solid 
solutions) are grouped together.

Fei, Y. et al – in preparation



Synthesis pathway Predicted phases

CaC2_2 (17%)
CaVO5_59 (83%)

Issue
Carbon rich calcium carbide 
phase as CaC2 should not be 
present as we are not reducing to 
form the carbide. The overall fit 
quality is also not great so we may 
have extra skepticism on this result.

Precursors: CaCO3, V2O5
Target: CaVO2
Temperature: 600C
Dwell Duration: 12h
Tube Furnace: Argon

In deployment, however, we see instances where 
chemical intuition is needed for proper interpretation
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How do we automate chemical intuition?

Chemical knowledge:
ØComposition balance
ØLLM

ØPhase stability 
ØChemical plausibility
ØPrecursor information

o Provide the LLM with the synthesis 
precursors and procedure.

o Ask the LLM to rank the likelihood of a 
synthesis outcome.

o Uses “few-shot” prompting, so a 
few examples are provided to the LLM 
so it understands the instruction.

Do LLMs have such an intuition?
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Some of our initial tests indicated the LLMs
may indeed have useful chemical intuition

For the given precursors and conditions, the LLM (GPT-4o) ranks:
o CaC2 to be an unlikely outcome with p~0.1
o CaV2O5 to be a likely outcome with p~0.6
o A mixture of those phases to have p~0.3 

This is the type of intuition we are looking for!



Integrating this idea into a more general 
Automated Interpretation Framework (AIF)
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Synthesis pathway Predicted phases

CaC2_2 (17%)
CaVO5_59 (83%)

Issue
Carbon rich calcium carbide 
phase as CaC2 should not be 
present as we are not reducing to 
form the carbide. The overall fit 
quality is also not great so we may 
have extra skepticism on this result.

Precursors: CaCO3, V2O5
Target: CaVO2
Temperature: 600C
Dwell Duration: 12h
Tube Furnace: Argon

Revisiting example with unexpected CaC2
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AIF correctly suggests CaC2 is less likely 
based on chemical priors we introduced



Conclusions and future work
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The AIF probabilistic Bayesian 
framework incorporates chemical 
intuition into automated XRD analysis.

o Future work:
o Uncertainty analysis, including 

none of the interpretations being 
correct.

o Larger-scale testing of the 
framework to demonstrate its 
applicability is needed.

o Include framework in joint 
analyses (e.g. XRD + SEM-EDS).
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