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Autonomous labs accelerate discovery.
But also bring new data challenges!
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We have 3 tiers of data storage:
document, quick-access files, and archival files
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_id: ObjectID('xxx")
name : “xxx"

MongoDB(NoSQL) documents

v sem_eds:

o Grimde e (frequent access) are used to store
i SO ~ scan_3: Object . metadata, analysis, and state. Fast to query
: ﬁ°w. er_dosing ’F particle_1 : Objectld('xxx’) \ .

eating particle_2 : Objectid('xyz’) and support flexible, nested structures.
> sem_eds | eds_spectrum_1: Objectld('xxz")
» xrd , eds_spectrum_2: Objectid('xyx’)
» ending \image_metadata : Objectld('xxy’) / M DB G _dFS
' ongo rl
s (frequent access) are used to store
s e frequently needed files, images, etc.
GridFS
T— N
vEe) AWS storage

Bt particle_1.jpg (archival, rarely accessed) are used to store
I cs f— large raw data formats.

eds_spectrum_1.csv

- %

eds_spectrum_1.csv

[ NoSQL - Enables fast queries by retrieving all relevant experiment data together} 3




Building an interactive dashboard for analysis

Alab Dashboard
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More samples, more problems:
How to scale characterization?

Traditional characterization

POWDER XRD

Performed one-at-a-time, by a
dedicated expert using their
technical intuition,
experience.

Goal is to reach a single
(published) conclusion.

The challenge is to develop an
autonomous framework for high-
throughput characterization.

This should replicate expert

reasoning but scale to a large
number of samples.



DARA: Data-Driven XRD analysis for automated
phase identification

To improve automated characterization in
the A-Lab, the team has developed the
DARA method.

o Starting with a database of possibilities,
the software uses a tree search method
to traverse all the possibilities of phase
combinations.

o A Rietveld-Refinement-based phase
search (via BGMN) can handle complex
patterns (e.g., with peak shifts and
broadening)

o Multiple solutions are presented,
ranked by a numerical figure of merit.
Phases w/similar patterns (e.g., solid
solutions) are grouped together.
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In deployment, however, we see instances where
chemical intuition is needed for proper interpretation
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phase as CaC2 should not be
present as we are not reducing to
form the carbide. The overall fit

quality is also not great so we may
have extra skepticism on this result.
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How do we automate chemical intuition?

( Provide the LLM with the synthesis\

_ precursors and procedure.
Chemical knowledge:
» Composition balance

> LLM o Ask the LLM to rank the likelihood of a
> Phase stability synthesis outcome.
» Chemical plausibility
> Precursor information o Uses “few-shot” prompting, so a

few examples are provided to the LLM

\so it understands the instruction. /
\\\




Some of our Initial tests indicated the LLMs
may indeed have useful chemical intuition

"CaV205_59": "CaVv205 is more likely to form under the given synthesis
conditions. The precursors CaC03 and V205 can react to form
CaVv205 at 600°C, especially in the presence of an Ar+H2

The synthesis data are:
Target: CaVv02
Precursors: ['CaC03', 'V205']
Temperature: 600°C

Dwell Duration: 12.0 hours atmosphere, which can facilitate the reduction of V205.
Furnace: Argon The dwell duration of 12 hours is sufficient to allow for
the reaction to proceed to completion, making the formation
phases = ['CaC2_2"', 'CaV205_59'] of CaVv205 plausible.",
Likelihoods: {{ "CaC2_2": 0.1, y
"CaVvV205_59": 0.6
i
Interpretation_Likelihood: 0.3,
Explanations: { Interpretation_Explanation:
"CaC2_2": "CaC2 is unlikely to form under the given synthesis conditions. { "The combination of CaC2 and CaV205 as the formed phases is not highly likely.
The precursors CaC03 and V205 do not provide the necessary carbon While CaV205 can form under the given conditions, the formation of CaC2 is

source in a form that would favor the formation of CaC2.
Additionally, the temperature of 600°C is not typically sufficient
for the formation of CaC2, which generally requires higher
temperatures and a more reducing environment.",

improbable due to the lack of a suitable carbon source and the relatively
low synthesis temperature. Therefore, the overall likelihood of this combination
of phases being a valid interpretation is moderate to low."}

For the given precursors and conditions, the LLM (GPT-40) ranks:
o CaC, to be an unlikely outcome with p~0.1

o CaV,0; to be a likely outcome with p~0.6

o A mixture of those phases to have p~0.3

This is the type of intuition we are looking for!




Integrating this idea into a more general
Automated Interpretation Framework (AlF)
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Revisiting example with unexpected CaC2
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Interpretation 5

Interpretation_2

Interpretation_4

Interpretation_ 3

AlF correctly suggests CaC2 is less likely
based on chemical priors we introduced
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Conclusions and future work

The AIF probabilistic Bayesian
framework incorporates chemical
intuition into automated XRD analysis.

o Future work:
o Uncertainty analysis, including
none of the interpretations being

correct.

Which amorphous
phases

Crystalline
phases’ weight
fractions

Which

crystalline Particle size and

morphology

Homogeneity
of reaction

TRTIEARTY
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I"y

o Larger-scale testing of the
framework to demonstrate its
applicability is needed.

o Include framework in joint
analyses (e.g. XRD + SEM-EDS).
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