Portfolio Projects

Olympia Dartsi

Research at CERN (European Organization for Nuclear Research)

eliminating the background noise

To test our best theories about the fundamental structure of our universe, CERN has build a massive particle collider which generates an enormous amount of data:

~1 billion of collisions/second -> 1PB of collision data per second

Hundreds of different processes happening all at once

Challenge for researchers: Extract the signal they are interested in by

Research at CERN

Context: The Standard Model predicts a mechanism for proton decay that has not yet been experimentally confirmed.

- Problem 1: there is another decay with same initial and final state that is much more likely to happen.
- Problem 2: the two processes interfere, generating additional noise
- Problem 3: detector limitations add bias to the results

Challenge: How do we figure out which events in our data correspond to the process we are interested in?

Research at CERN

How do we address these problems?

- Solution for 1: Characteristics of final states differ (example: mass of electrons). -> Build a **boosted decision tree** to separate the contributions
- Solution for 2: Use Monte Carlo simulation to estimate magnitude of interference effects
- Solution to 3: Calibrate raw data to account for detector imperfections using an "unfolding" method based on Bayes' theorem

Time series forecasting using Neural Network

- Purpose: to predict future revenues
- Based on an Encoder-Decoder architecture
- Encode categorical variables (year, month, day, country, holiday, etc.) with a One-Hot encoder.

Computer Vision projects

- Unsupervised anomaly detection using auto encoders for MNIST digit dataset
- Training data: no anomalies
- Test data: both normal and irregular digits
- Assumptions:
 - After encoding and decoding, the training images will look almost identical
 - For outliers in test data, original and reconstructed images will differ

