Search for the electroweak production of $Z\gamma$ pairs and measurement of the differential cross section of the $Z\gamma$ production in association with two jets with the ATLAS experiment at LHC.

PhD defense Olympia Dartsi supervised by Lucia Di Ciaccio

3 October 2019

Outline

- **1** Theoretical Introduction
 - The Standard Model
 - Vector Boson Scattering
- 2 The LHC and the ATLAS detector
- 3 Electron Performance Studies
 - Electron Identification
 - Electron efficiency methodology
- 4 $Z\gamma jj$ Analysis
 - Analysis methodology
 - Cross-section measurements
- 🗿 Summary & Outlook

The Standard Model of particle physics

Standard Model (SM):

- Provides a unified picture of the fundamental particles and their interactions.
- Categorization into fermions and bosons.
- 3 kinds of interactions:
 - electromagnetic (γ)
 - weak (W^{\pm}, Z)
 - strong (g)
- Higgs → allowing the introduction of mass.

The Standard Model of particle physics

• The SM predicts interactions between the EW gauge bosons called self-interactions.

Standard Model (SM):

- Provides a unified picture of the fundamental particles and their interactions.
- Categorization into fermions and bosons.
- 3 kinds of interactions:
 - electromagnetic (γ)
 - weak (W^{\pm}, Z)
 - strong (g)
- Higgs → allowing the introduction of mass.

The Standard Model of particle physics

Triple & quartic gauge couplings are central predictions of the EW theory

• no neutral gauge boson self-couplings in the SM (at tree level)

Gauge boson self-interactions are responsible for vector boson scattering.

VBS
$$\Rightarrow$$
 rare processes ($VV \rightarrow VV, V = W^{\pm}, Z, \gamma$)
 \Rightarrow probe the non-Abelian structure of the EW interactions

Vector Boson Scattering in the Standard Model

- Higgs boson restores unitarity of the scattering amplitude.
- \Rightarrow the study of high-energy behaviours of VBS is crucial to understand the nature of EWSB in the SM

Vector Boson Scattering beyond the Standard Model

New physics could modify couplings between bosons leading to anomalous triple and anomalous quartic gauge couplings

• presence of aGCs enhances EW cross-section and it's more pronounced at high-energy tails (m_{VV}, E_T, p_T) .

 \Rightarrow examine variables that carry the energy of the system: p_T or mass

Vector Boson Scattering - diagram

VVjj processes \Rightarrow produced through a combination of strong (QCD) and EW interactions.

- *VVjj*-EW (VBS and non-VBS), can not be separated \Rightarrow signal
- VVjj-QCD \Rightarrow background

Vector Boson Scattering - diagram

• Interference occurs between VVjj-EW & VVjj-QCD production.

Vector Boson Scattering - event topology

 Vector bosons → centrally with respect to the jets

- Two hadronic jets in forward and backward regions (tagging jets) with very high energy & high invariant mass
- hadronic activity suppressed between the two jets (rapidity gap)

Status of the VVjj-EW search in pp collisions

$Z\gamma jj$ -EW production - Motivation

- So far the $Z\gamma jj$ -EW production has never been observed.
- Observation is expected with full RunII data.

• Aim:

observe & measure EW cross-section

• Experimental challenge:

 $EW \rightarrow$ two orders of magnitude lower than QCD.

The Large Hadron Collider

The Large Hadron Collider

- $\sqrt{s} = 13 \text{ TeV}$
- In 2015-2016 data $\mathcal{L} = 36.1 \text{ fb}^{-1}$
- RunII full stat. $\mathcal{L} = 139 \text{ fb}^{-1}$

- World's largest particle collider.
- Hadron-hadron accelerator.
- Accelerator parameters:

$$N = \mathcal{L} \times \sigma$$

The ATLAS Detector

One of the two general-purpose detectors with forward-backward symmetry.

- ATLAS trigger system preselects events which may be of interest
- Purpose: to record information about the final state particles

The ATLAS Detector

Electron Performance Studies

Electron Identification

Electron identification play a crucial role in the $Z\gamma jj$ analysis. Electron identification: track (ID) + energy deposit (ECAL).

A Likelihood method algorithm is built from:

- track variables (number of hits, $d_0, ...$)
- calorimeter shower shapes variables
- track-cluster matching $(\Delta \eta, \Delta \phi)$

3 identification menus of signal efficiency with respect to the background rejection:

• Loose, Medium & Tight

Electron identification efficiency methodology

Measure the identification efficiency in data. **Tag-and-probe method of** $Z \rightarrow ee$:

Verify that the ϵ_{ID} is well modeled in MC \rightarrow correction factor from data.

 $SF = \frac{\epsilon_{\rm ID}^{\rm Data}}{\epsilon_{\rm ID}^{\rm MC}}$

$Z \rightarrow ee$ background evaluation

- invariant mass of the 2 electrons \sim Z-boson mass.
- uses sidebands to constrain the background.
- \rightarrow In bins of η and E_T (15-150 GeV)

I contributed to the Z_{iso} method.

- electrons produced from the $Z \rightarrow ee$ decay are isolated.
- uses the probe isolation to constrain the background.

PhD Defense

Comparison between Zmass and ZIso results

- At low E_T bin discrepancy on SFs between Z_{iso} & Z_{mass} method.
- Fair agreement is found in the higher E_T bins.

• The main impact (up to 5%) was found related to the modeling of the shape of the data driven background

Electron identification efficiency methodology

Tag-and-probe method of $Z \rightarrow ee\gamma$:

- understanding of the discrepancy between Zmass and Ziso
- extended the E_T range of Z methods in the 10-15 GeV bin

Electron identification efficiency with $Z \rightarrow ee\gamma$ events

• Less background probes than the $Z \rightarrow ee$ methods.

• invariant mass of the 3 objects \sim Z-boson mass

• uses sidebands to constrain the background as Zmass method

I developed & implemented this method in the ATLAS software.

Electron SFs with $Z \rightarrow ee \& Z \rightarrow ee\gamma$ methods

Combined SFs

- 7-10 GeV: $J/\psi \rightarrow ee$ method,
- 10-15 GeV: $J/\psi \rightarrow ee$ and $Z \rightarrow ee\gamma$ methods combined,
- 15-20 GeV: all methods combined,
- above 20 GeV: $Z \rightarrow ee$ method.

$Z\gamma jj$ analysis

Event selection

Ontrol regions and background estimation

Interference studies

- Results from the fit:
 - signal strength & integrated cross-section measurement
 - differential cross-section measurement

$Z\gamma jj$ event selection

Signal object selection:

- ≥ 2 jets $p_T > 30$ GeV
- = 2 leptons $p_T > 20$ GeV & isolated
- \geq 1 photon $E_T > 15$ GeV & isolated

Boson mass	$m_{\ell^+\ell^-} > 40~{ m GeV}$
	$m_{\ell^+\ell^-} + m_{\ell^+\ell^-\gamma} > 182 \text{ GeV}$
	$p_T > 50$ GeV of two tagging jets
	$ \eta < 4.5$ of two tagging jets
VBS baseline selection	$m_{jj} > 150 \text{ GeV}$
	$\zeta(Z\gamma) < 5$
	$ \Delta \eta_{jj} > 1$

$$m_{jj} = \sqrt{((E_{j1} + E_{j2})^2 - (\vec{p}_{j1} + \vec{p}_{j2})^2)}$$

$$\zeta(Z\gamma) = \left| \frac{y_{Z\gamma} - (y_{j1} + y_{j2})/2}{\Delta Y_{jj}} \right|$$

Background processes - irreducible background

Irreducible background (\rightarrow 2 prompt leptons and a prompt photon):

- $Z\gamma jj$ -QCD $\rightarrow m_{jj}$ smaller than $Z\gamma jj$ -EW
- $t\bar{t}\gamma \rightarrow has b-jets$

How to evaluate the remaining irreducible background?

- exploit the *m_{jj}* shape in a MVA
- use a control region with no b-jets

Background processes - reducible background

Reducible background (\rightarrow mis-identified jet as γ or ℓ):

- Z+jets \rightarrow fake-photon
- WZ, single top \rightarrow small contributions \rightarrow estimated using MC

How to evaluate the remaining reducible background?

- apply photon isolation
- require tight photon

Discrimination signal from background methodology

- baseline method \Rightarrow BDT approach $(p_T(Z\gamma), \zeta(Z\gamma), m_{Z\gamma}, m_{jj})$
- cross-check method \Rightarrow cut-based approach ($\zeta(Z\gamma)$)

Analysis regions

The phase space divided into: 2 regions for **BDT approach**: **BDT-R** : rich in $Z\gamma jj$ -EW & QCD **b-CR**: rich in $t\bar{t}\gamma$

3 regions for **cut-based approach**: **SR** : rich in $Z\gamma i$:EW **QCD-CR** : rich in $Z\gamma jj$ -QCD **b-CR**: rich in $t\bar{t}\gamma$ $\mathbf{N}_{\mathrm{b-jet}}$ h-CB enriched in thy events Control Region Search Region (SR) (OCD-CR)

500

150

m_a (GeV)

Background estimation & event yield

Z+jets \Rightarrow a 2D sideband data-driven (ABCD) method is used (15%)

 $Z\gamma jj$ -QCD \Rightarrow normalization factor estimated with the ABCD method and then obtained from the fit (73%)

 $t\bar{t}\gamma \Rightarrow$ a dedicated control region is built, b-CR (3%)

WZ and single top \Rightarrow are estimated by MC (0.5%)

Interference of strong and electroweak production

VVjj-EW & *VVjj*-QCD: identical initial and final state \Rightarrow interfere with each other

- In the **RunI** the interference effect was small compared to the statistical uncertainty.
- In **RunII** using MC simulations we revisited the interference effect.

Interference of strong and electroweak production

There are two ways to evaluate the size of the EW-QCD interference term on the total $Z\gamma jj$ cross section:

- Indirect way \Rightarrow calculating $\sigma_{EW}, \sigma_{QCD}$ and σ_{EW+QCD}
- Direct way \Rightarrow calculating interference term using MADGRAPH

The cross section of the process is proportional to:

$$|M|^2 = |M_1 + M_2|^2 = |M_1|^2 + |M_2|^2 + 2 \times Re(M_2^* \times M_1)$$

$$\diamond \ Z\gamma jj-EW: |M_1|^2 \propto (\mathcal{O}(\alpha_w^4))$$

- ♦ Z γ jj-QCD: $|M_2|^2 \propto (\mathcal{O}(\alpha_s^2 \alpha_w^2))$
- ♦ Interference: $2 \times Re(M_2^* \times M_1) \propto (\mathcal{O}(\alpha_s \alpha_w^3))$

In RunII the interference effect is estimated to be:

SR : $(1.9 \pm 0.1)\%$ **BDT-R** : $(3.5 \pm 0.3)\%$

Controlling the interference

Investigation of the optimization of the phase-space definition.

• $\Delta \eta_{jj}$ has the most discriminant power between the two contributions

Treatment of the interference

The interference effect is not included in the $Z\gamma jj$ -QCD measurement \Rightarrow the observed cross section formally corresponds to the EW production including the interference effects.

The idea is:

• To assign the effect of the interference on the shape of the signal template as an uncertainty.

PhD Defense

- Estimation of this uncertainty by adding the two distributions
- Interference uncertainty⇒ difference between EW and EW+Int

weight =
$$\frac{EW + Int}{EW}$$

Treatment of the interference

The interference effect is not included in the $Z\gamma jj$ -QCD measurement \Rightarrow the observed cross section formally corresponds to the EW production including the interference effects.

- Estimation of this uncertainty by adding the two distributions
- Interference uncertainty⇒ difference between EW and EW+Int

weight =
$$\frac{EW + Int}{EW}$$

Fit procedure

Multivariate approach \rightarrow gives as an output a BDT score distribution.

- \rightarrow signal-like or background-like output
- ightarrow used in the fit to extract the signal strength

Signal strength: $\mu_{\rm EW} = N_{\rm meas}^{\rm EW} / N_{\rm exp}^{\rm EW}$

- binned likelihood fit
- expected results → using Asimov pseudo-data

 $\mu_{EW} = 1.00^{+0.19}_{-0.18} \, (\text{stat})^{+0.08}_{-0.10} \, (\text{MCstat})^{+0.09}_{-0.08} \, (\text{syst})^{+0.13}_{-0.10} \, (\text{theo})$

Observed significance 4.1σ

Fit procedure

Multivariate approach \rightarrow gives as an output a BDT score distribution.

- \rightarrow signal-like or background-like output
- ightarrow used in the fit to extract the signal strength

Signal strength: $\mu_{\rm EW} = N_{\rm meas}^{\rm EW} / N_{\rm exp}^{\rm EW}$

- binned likelihood fit
- expected results → using Asimov pseudo-data

 $\mu_{EW} = 1.00 \begin{vmatrix} +0.19 \\ -0.18 \end{vmatrix} (\text{stat}) \begin{vmatrix} +0.08 \\ -0.10 \end{vmatrix} (\text{MCstat}) \begin{vmatrix} +0.09 \\ -0.08 \end{vmatrix} (\text{syst}) \begin{vmatrix} +0.13 \\ -0.08 \end{vmatrix} (\text{theo})$

Observed significance 4.1σ

PhD Defense

Cross-section measurements

Integrated cross-section measurement

$\sigma_{\rm obs, EW}^{\rm fid.} = 7.8 \frac{+1.5}{-1.4} \, (\text{stat.}) \frac{+0.9}{-1.0} (\text{exp.syst}) \frac{+1.0}{-0.8} \, (\text{model.syst}) \, \text{fb}$

Source	Uncertainty [%]
Statistical	$^{+19}_{-18}$
$Z\gamma jj$ -EW theory modeling	$^{+10}_{-6}$
$Z\gamma jj$ -QCD theory modeling	± 6
$t\bar{t}\gamma$ theory modeling	± 2
$Z\gamma jj$ -EW and $Z\gamma jj$ -QCD interference	$^{+3}_{-2}$
Jets	± 8
Pile-up	$^{+6}_{-4}$
Electrons	± 1
Muons	+3
Photons	$\pm \tilde{1}$
Electrons/photons scale	± 1
b-tagging	± 2
MC statistics	± 8
Backgrounds normalization	$^{+9}_{-8}$
Luminosity	± 2
Total Systematics	$^{+27}_{-25}$

 $\sigma_{\text{exp. EW}}^{\text{fid.}} = 7.75 \pm 0.03(\text{stat}) \pm 0.2(\text{PDF} + \alpha_{\text{s}}) \pm 0.4(\text{scale}) \text{ fb}$ $\sigma_{\text{obs. EW}+QCD}^{\text{fid.}} = 71 \pm 2(\text{stat.})^{+9} (\text{exp.syst})^{+21}_{-17} (\text{model.syst}) \text{ fb}$

Olympia Dartsi

Differential cross-section measurements - motivation

Measurement by combined $Z\gamma jj$ -QCD and $Z\gamma jj$ -EW.

Interesting observables:

- $P_T^{\gamma}, M_{Z\gamma}, M_{jj} \Rightarrow$ sensitive in the high value tails to aQGCs
- $N_{\text{jets}} \Rightarrow$ to probe the QCD modeling

Extrapolation from detector to particle level:

- results can be compared to theory and other experiments
 - Detector effects distort the distribution of the measured observables.
 - The procedure of correcting these distortions is known as unfolding.

Differential cross-section measurements

$$\sigma_k = \frac{1}{L} \times \frac{1}{\epsilon_k} \times \sum_j M_{jk}^{-1} (N_j^{\text{obs}} - N_j^{\text{bkg}}) \times A_j$$

$$A_j = \frac{N_j(reco\&gen)}{N_j(reco)}$$

$$\epsilon_k = \frac{\mathbf{N}_k(reco\&gen)}{\mathbf{N}_k(gen)}$$

 $M_{jk} \rightarrow$ probability for an event in bin k at **particle level** to end up in bin j at **reconstruction level**.

Olympia Dartsi

Differential cross-section measurements

A Bayesian iterative method is used:

- estimation of the true spectra with an iterative procedure $f^{r+1}(true) = \int f^r(true) \frac{g(obs)_{data}}{o^r(obs)} P(true|obs) dobs$
- more iterations:
 - \Rightarrow closer to the true distribution
 - \Rightarrow higher statistical uncertainty
- Measured in the SR of the cut-based approach.
- The binning of the observables is chosen depending on the statistics & resolution.
- Migration matrix \rightarrow combining $Z\gamma jj$ -EW& $Z\gamma jj$ -QCD (MC).

Olympia Dartsi

Systematic uncertainties of the background

- WZ & single top \Rightarrow from MC (normalization & shape). [$\pm 20\%$]
- $t\bar{t}\gamma \Rightarrow$ shape from MC & normalization from b-CR. [$\pm 20\%$]
- Z+jets ⇒ normalization from the ABCD method [±20%]
 & shape from the Zγjj-QCD MC sample [shape difference]

• Objects used in the analysis: quadratic sum of each category

- leptons: scale, resolution, efficiency and trigger.
- jets: modeling, calibration, flavor, pile-up and efficiency.
- photons: isolation and identification efficiency.

• Due to the unfolding method:

migration matrix	Data to unfold
SHERPA V2.2.2 $Z\gamma jj$ -QCD and EW	data
SHERPA V2.1 $Z\gamma jj$ -QCD and MADGRAPH $Z\gamma jj$ -EW	data

Differential cross-section measurement - results: $M_{Z\gamma}$

$m_{Z\gamma}$ [GeV]	80 - 150	150 - 250	250 - 350	350 - 500	≥ 500
$\Delta \sigma_{Z\gamma jj}^{\text{fid.}}$ [fb]	7.55	9.23	3.99	2.19	1.00
	Relati	ve Uncertain	ties [%]		
Statistics	13.2	11.1	15.4	24.2	26.7
All systematics	34.2	26.4	21.5	25.0	26.8
Luminosity	2.8	2.6	2.5	2.6	2.3
Total	36.7	28.7	26.4	34.8	37.9
Uncorrelated syst.	1.0	1.2	1.4	1.7	1.3
Unfolding	0.9	0.4	0.7	1.1	0.5
Electrons	1.0	0.9	1.2	1.6	3.6
Muons	1.9	1.9	2.0	2.8	3.2
Photons	1.9	1.2	1.1	1.3	1.4
Jets	11.4	7.3	4.5	8.9	3.8
Z+jets Back.	29.0	24.3	18.3	19.7	21.9
Other Red. Back.	0.2	0.1	0.1	0.1	0.1
Irred. Background	1.0	1.2	1.4	1.7	1.3
Pileup	7.7	3.1	3.9	1.5	0.5

Predictions:

Gev Sherpa2.2: EW & QCD Sherpa2.2 [Gev] MADGRAPH: EW & QCD MADGRAPH Sherpa2.1: EW Sherpa2.2 & QCD Sherpa2.1

Differential cross-section measurement - results: N_{jets}

Nista	1 - 2	2 - 3	3 - 4	> 4
$\Delta \sigma_{7,}^{\text{fid.}}$ [fb]	11.63	6.97	3.75	1.37
Relative	Uncerta	inties [9	%]	
Statistics	9.9	13.5	19.1	38.0
All systematics	22.0	28.9	51.1	90.7
Luminosity	2.6	2.6	2.9	2.8
Total	24.1	31.9	54.5	98.3
Uncorrelated syst.	2.0	3.9	4.8	8.6
Unfolding	2.1	1.8	1.7	1.9
Electrons	0.8	0.8	0.9	0.8
Muons	1.9	2.0	1.7	2.9
Photons	1.2	1.6	1.8	1.3
Jets	9.2	7.7	35.0	66.7
Z+jets Back.	16.7	26.1	34.3	57.2
Other Red. Back.	0.1	0.2	0.1	0.3
Irred. Background	2.0	3.9	4.8	8.6
Pileup	5.0	3.3	5.4	9.6

Sherpa2.2: EW & QCD Sherpa2.2 MadGraph: EW & QCD MadGraph

SHERPA2.1: EW SHERPA2.2 & QCD SHERPA2.1

Summary & Outlook

- Measurement of electron ID efficiencies for the ATLAS
- Evidence of the $Z\gamma jj$ -EW production reached:
 - the cross-section is in agreement with predictions
 - electron identification contribute with an uncertainty $\pm 1\%$
 - the interference effect between the $Z\gamma jj$ -EW and $Z\gamma jj$ -QCD evaluated:
 - optimization of the phase-space selection
 - $\bullet~$ contribution with an uncertainty of 3%~
- Differential cross section measured for 1st time
 - even though with partial statistics this will pave the way for the full Run II analysis.

Prospects:

- With an increase of the luminosity 4 times with full RunII data
 - \Rightarrow the statistical uncertainty will decrease on half
 - \Rightarrow the theory uncertainty becomes relevant

Back-up

Anomalous quartic gauge couplings (aQGCs)

Any deviation from the SM predictions \rightarrow a hint for new physics BSM.

- New physics could modify couplings between bosons leading to anomalous triplet and quartic gauge couplings
- presence of aQGCs enhances EW cross-section and it's more pronounced at high-energy tails.
 - ⇒ examine variables that carry the energy of the system: transverse momentum or mass

For their description \Rightarrow Effective Field Theory (EFT) with higher order dimension operators.

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{i} \frac{f_j^{(8)}}{\Lambda^4} \mathcal{O}_j^{(8)}$$

- New interactions are suppressed by the scale of new physics Λ .
- Lowest order pure aQGCs arise from dimension-8 operators

Olympia Dartsi

Anomalous quartic electroweak gauge coupling parameters of the dimension-8 operators. Checkmark (\checkmark) indicate a dependence of the final state on the corresponding parameter.

	ZZ	$Z\gamma$	W^+W^-	$W^{\pm}W^{\pm}$	$W\gamma$	
VVjj final state		$\gamma\gamma$	WZ			
	ZZZ	$ZZ\gamma$	WWZ	WWW	$WV\gamma$	$\gamma\gamma\gamma$
VVV final state		$Z\gamma\gamma$	WZZ			
$f_{S,0}, f_{S,1}$	\checkmark	—	\checkmark	\checkmark	—	—
$f_{M,0}, f_{M,1}, f_{M,6}, f_{M,7}$	\checkmark	 ✓ 	\checkmark	\checkmark	\checkmark	-
$f_{M,2}, f_{M,3}, f_{M,4}, f_{M,5}$	\checkmark	\checkmark	\checkmark	—	\checkmark	-
$f_{T,0}, f_{T,1}, f_{T,2}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$f_{T,5}, f_{T,6}, f_{T,7}$	\checkmark	\checkmark	\checkmark	_	\checkmark	\checkmark
$f_{T,8}, f_{T,9}$	\checkmark	\checkmark	—	—	—	\checkmark

Calorimeters

Basics:

- particles to be measured are fully absorbed and their energy transformed into a measurable quantity.
- particles' interactions with the detector produces a shower of secondary particles with progressively degraded energy.
- 1st categorization
 - Electromagnetic: measure the energy of electrons and photons through their electromagnetic interactions.
 - **Hadronic**: measure hadrons through their electromagnetic and strong interactions.
- 2^{nd} categorization
 - **Sampling calorimeters**: a dense material for energy degradation and an active material to provide the detectable signal.
 - **Homogeneous calorimeters**: one type of material for energy degradation and signal generation.

ATLAS LAr Calorimeter

active material: Liquid Argon

absorber: lead

- Interactions mainly in lead absorber
- charged particles ionize Ar atoms
- electrons drift in the LAr gap where an electric field is applied
- induced signal have a characteristic triangular shape current peak \propto energy lost by particles

Olympia Dartsi

PhD Defense

Quantities used in the electron identification

Type	pe Description		Rejects			Usage	
			LF	ľγ	HF	l č	
Hadronic	Ratio of E_T in the first layer of the hadronic calorimeter	R _{had1}	x	x		LH	
leakage	to E_T of the EM cluster						
	(used over the range $ \eta < 0.8$ or $ \eta > 1.37$)						
	Ratio of E_T in the hadronic calorimeter						
	to E_T of the EM cluster	Rhad	x	x		LH	
	(used over the range $0.8 < \eta < 1.37$)						
Third layer of	Ratio of the energy in the third layer to the total energy in the						
EM calorimeter	EM calorimeter. This variable is only used for						
	$E_T < 80 \text{ GeV}$, due to inefficiencies at high E_T , and is	f_3	x			LH	
	also removed from the LH for $ \eta > 2.37$, where it is						
	poorly modelled by the simulation.						
Second laws of	I at an a how an width $\sqrt{(\Sigma E m^2)/(\Sigma E)} = \sqrt{(\Sigma E m)/(\Sigma E))^2}$						
EM colorimeter	Eateral shower with, $\sqrt{(\Delta E_i \eta_i)/(\Delta E_i)} = ((\Delta E_i \eta_i)/(\Delta E_i))$,					TH	
EM calorimeter	where E_i is the energy and η_i is the pseudorapidity of call i and the sum is calculated within a window of 2×5 calls	$w_{\eta 2}$	x	x		LI	
	Betis of the manual in 2×2 cells must be anomal in 2×7 cells	D				TH	
	contrad at the electron cluster porition	n_{ϕ}	^	^		L II	
	Ratio of the energy in 3×7 cells over the energy in 7×7 cells	R	×	~	~	LH	
	centred at the electron cluster position	nuη		l ^	L ^	bii	
		-		-			
First layer of	Shower width, $\sqrt{(\Sigma E_i(i - i_{max})^*)/(\Sigma E_i)}$, where <i>i</i> runs over						
EM calorimeter	all strips in a window of $\Delta \eta \times \Delta \phi \approx 0.0625 \times 0.2$,	$w_{\rm stot}$	x	x	x	C	
	corresponding typically to 20 strips in η , and i_{max} is the	\sim					
	index of the highest-energy strip, used for $E_T > 150$ GeV only						
	Ratio of the energy difference between the maximum						
	energy deposit and the energy deposit in a secondary	E_{ratio}	x	x		LH	
	maximum in the cluster to the sum of these energies						
	Ratio of the energy in the first layer to the total energy	f_1	×			LH	
	in the EM calorimeter						
Track	Number of hits in the innermost pixel layer	n _{Blayer}		x		C	
conditions	Number of hits in the pixel detector	n _{Pixel}		х		C	
	Total number of hits in the pixel and SCT detectors	n _{Si}		х		C	
	Transverse impact parameter relative to the beam-line	d ₀		x	x	LH	
	Significance of transverse impact parameter	$-d_0/\sigma(d_0)-$		x	x	LH	
	defined as the ratio of d_0 to its uncertainty						
	Momentum lost by the track between the perigee and the last	$\Delta p/p$	x			LH	
	measurement point divided by the momentum at perigee						
TRT	Likelihood probability based on transition radiation in the TRT	eProbabilityHT	×			LH	
Track-cluster	$\Delta \eta$ between the cluster position in the first layer	$(\Delta \eta_1)$	x	×		LH	
matching	and the extrapolated track	\sim					
	$\Delta \phi$ between the cluster position in the second layer						
	of the EM calorimeter and the momentum-rescaled	$\Delta \phi_{res}$	×	×		гн	
	track, extrapolated from the perigee, times the charge q			<u> </u>		0	
	Ratio of the cluster energy to the track momentum, used for	12 / p	X	x		6	
1	$E_T > 150$ GeV only	1			1		

Electron identification - Likelihood method

Likelihood functions are constructed as the product of *n* pdfs for signal & background:

$$\mathcal{L}_{S(B)}(\vec{x}) = \prod_{i=1}^{n} P_{S(B),i}(x_i)$$

The signal & bkg likelihood are then combined into a discriminant $d_{\mathcal{L}}$ on which selected criteria are applied:

$$d_{\mathcal{L}} = rac{\mathcal{L}_S}{\mathcal{L}_S + \mathcal{L}_B}$$

• Signal peaks at 1 & Background peaks at 0

• \Rightarrow inconvenient since will require extremely fine binning \Rightarrow an inverse sigmoid function is used:

$$d_{\mathcal{L}}' = -\tau^{-1} ln (d_{\mathcal{L}}^{-1} - 1)$$

The 3 working points have different threshold of this value to separate signal from background.

Electron identification - Likelihood method

The measured LH identification efficiencies.

Calorimeter based isolation:

a cone of size ΔR is build around the direction of candidate electron.

$$E_T^{cone,\Delta R} = \left(\sum_{i \in \Delta R} E_{T, \text{topocluster}}\right) - E_T$$

- The energies of all topological clusters, whose barycenters fall within a cone of radius ΔR are summed.
- The core energy E_T , is subtracted by removing the cells around the direction of the candidate.

Distributions of the probe isolation for the bin: 20 GeV $< E_T < 25$ GeV and 0.6 $< \eta < 0.8$.

Electron identification - ZIso method

	Events included in the GRL					
	Events pa	iss single electron trig	gers			
ĺ	Nur	nber of vertices ≥ 1				
	$\ge 2 \text{ trac}$	ks assigned to the ver	tex			
	Object quality criteria	on ECAL cluster of t	he tag and probe			
	≥ 2	electrons in the event				
	Reject probe electrons w	ithin $\Delta R < 0.4$ to jet	with $E_T^{\text{jet}} > 20 \text{ GeV}$			
	For MC events: successful	truth matching for ta	g and probe electrons			
	Tag electron	Probe electron	Tag-Probe pair			
ĺ	$E_T > 27 \text{ GeV}$	$E_T \ge 15 \text{ GeV}$				
	$-2.47 \ge \eta \le 2.47$	$-2.47 \ge \eta \le 2.47$	$75 \le m_{ee} \le 105 \text{ GeV}$			
	excluding $1.37 \ge \eta \le 1.52$		opposite charge pairs			
	match to trigger	-	opposite charge pairs			
	pass Tight ID	-				

Olympia Dartsi

Comparison Zmass and ZIso methods

Olympia Dartsi

Impact of the variation of relevant parameters of the ZIso method on the scale factors

63 / 49

E_T (GeV)	Template	Mass window	E_T^{cone} threshold	$E_T^{cone,\Delta R=0.4}$	Tag isolation
15-20	±5%	$\pm 2\%$	$\pm 0.4\%$	$\pm 0.4\%$	$\pm 0.6\%$
20-25	±3%	±1%	$\pm 0.4\%$	$\pm 0.4\%$	$\pm 0.5\%$
45-50	$\pm 0.5\%$	±0.1%	$\pm 0.2\%$	$\pm 0.3\%$	$\pm 0.2\%$
80-150	$\pm 0.3\%$	$\pm 0.1\%$	$\pm 0.2\%$	$\pm 0.2\%$	$\pm 0.1\%$

2015 data:

2016 data:

E_T (GeV)	Template	Mass window	E_T^{cone} threshold	$E_T^{cone,\Delta R=0.4}$	Tag isolation
15-20	±3%	$\pm 2\%$	$\pm 0.4\%$	$\pm 0.6\%$	$\pm 0.6\%$
20-25	±3%	±1%	$\pm 0.3\%$	$\pm 0.4\%$	$\pm 0.4\%$
45-50	$\pm 0.5\%$	$\pm 0.1\%$	$\pm 0.1\%$	$\pm 0.1\%$	$\pm 0.1\%$
80-150	$\pm 0.3\%$	$\pm 0.1\%$	$\pm 0.1\%$	$\pm 0.1\%$	$\pm 0.1\%$

Event pre-selection

Events included in the GRL				
Events pass the single electron trigger				
	number of ver	tices ≥ 1		
2	2 tracks assigne	d to the vertex		
Object qualit	y criteria on ECA	L cluster of tag and probe		
	\geq 2 electrons in the event			
	\geq 1 photons in	the event		
Reject probe electrons	within $\Delta R < 0.4$	to ANTIKT4 jet with $E_T^{\text{jet}} > 20 \text{ GeV}$		
Tag electron	Probe electron	Photon		
$E_T \ge 25 \text{ GeV}$	$E_T \ge 10 \text{ GeV}$	$E_T \ge 10 \text{ GeV}$		
$-2.47 \ge \eta \le 2.47$ $-2.47 \ge \eta \le 2.47$		$-2.37 \ge \eta \le 2.37$		
excluding $1.37 \ge \eta \le 1.52$				
match to trigger	-	converted & non-converted with two tracks		
pass Tight ID	-	pass Tight ID & isolated (FixedCutTight)		

Tag and proba have appearite abarge		
Tag and probe have opposite charge	Selection Cut	MC Number of events
$40 < M_{ee} < 90 {\rm GeV}$	$40 < M_{ee} < 90 \text{ GeV}$	76241
$M_{ ext{tag-}\gamma} < 80~ ext{GeV}$	$M_{ m tag-\gamma} < 80~ m GeV$	70595
$\Delta R_{ ext{tag-}\gamma} > 0.4$	$\Delta R_{ ext{tag-}\gamma} > 0.4$	70298
$\Delta R_{\text{probe-}\gamma} > 0.2$	$\Delta R_{ m probe-\gamma} > 0.2$	70298
$E_{Tarabe} + E_{T\gamma} > 30 \text{ GeV}$	$E_{Tprobe} + E_{T\gamma} > 30 \text{ GeV}$	67085
Ipiood I I I I I I I I I I I I I I I I I I]	

Event selection

Cutflow

MC %

100%

93%

99.6%

100%

95%

Electron Identification $Z \rightarrow ee\gamma$ method

Trigger (1.5 times more stat.):

single electron triggers were used with an E_T trigger threshold that from Run I to Run II was increased from 24 to 26 GeV

- HLT_e20_lhmedium_nod0_g35loose \rightarrow at least 1 *Medium* electron with $E_T > 20$ GeV & a *Loose* identified photon with $p_T > 35$ GeV
- HLT_e24_lhmedium_nod0_g25medium at least 1 *Medium* electron with $E_T > 24$ GeV & a *Medium* identification photon with $p_T > 25$ GeV
- $\Rightarrow E_T$ tag from 27 to 25 GeV

Photon isolation (1.2 times more stat.):

•	$\mathit{FixedCutTight} \Rightarrow$	FixedCutLoose
---	--------------------------------------	---------------

FixedCut Working Point	Calo isolation	Track isolation	
Tight	topoetcone40 < 0.022 pT + 2.45 [GeV]	ptcone20_TightTTVA_pt1000/pT < 0.05	
Loose	opoetcone20 < 0.065 pT ptcone20_TightTTVA_pt1000/pT < 0		20_TightTTVA_pt1000/pT < 0.05
Olympia Dartsi	PhD Defense		3 October 2019

Combined scale factors Zmass- $Z\gamma$

Combined scale factors Zmass-Z γ & ZIso-Z γ

Combined scale factors Zmass- $Z\gamma$ -ZIso

Electron SFs with $Z \rightarrow ee \& Z \rightarrow ee\gamma$ methods

Combined scale factors $J/\psi - Z\gamma$

Olympia Dartsi

Muon Channel	Electron Channel
Single-muon triggers:	Single-electron triggers:
HLT_mu20_iloose,	HLT_e24_lhmedium,
HLT_mu50	HLT_e60_lhmedium,
	HLT_e120_lhloose
di-muon trigger	di-electron trigger
HLT_2mu14	HLT_2e12_lhloose

Muon Channel	Electron Channel
Single-muon triggers:	Single-electron triggers:
HLT_mu26_ivarmedium	HLT_e26_lhtight_nod0_ivarloose,
HLT_mu50	HLT_e60_lhmedium_nod0,
	HLT_e140_lhloose_nod0
di-muon trigger	di-electron trigger
HLT_2mu14	HLT_2e17_lhvloose_nod0

	a pair of SFOC with				
	$p_T > 20 \text{ GeV}$				
Lepton	$ \eta_{\ell} < 2.47(2.5)$ for $e(\mu)$				
	remove <i>e</i> if $\Delta R(e, \mu) < 0.1$				
Boson mass	$m_{\ell^+\ell^-} > 40 \text{ GeV}$				
	$m_{\ell^+\ell^-} + m_{\ell^+\ell^-\gamma} > 182 \; { m GeV}$				
	$E_T^{\gamma} > 15 \text{ GeV}$				
Photon	$ \eta_{\gamma} < 2.37$ (excl. 1.37 $< \eta_{\gamma} < 1.52$)				
	remove γ if $\Delta R(\ell, \gamma) < 0.4$				
	$N_{jet}>=2, p_T^{jet}>30~{ m GeV} \ , \eta_{jet} <4.5$				
Jet	remove jets if $\Delta R(\ell, jet) < 0.3 \text{ OR } \Delta R(\gamma, jet) < 0.4$				
	$\Delta\eta_{jj}>1.0$				
	$p_T > 50 \text{ GeV}$ of two tagging jets				
	$ \eta < 4.5$ of two tagging jets				
VBS baseline selection	$m_{jj} > 150 \text{ GeV}$				
	$\zeta(Z\gamma) < 5$				
	$\Delta \eta_{jj} > 1$				

Z+jets background estimation

Z+jets normalization \Rightarrow the ABCD method is used:

- data-driven
- relies on:
 - calorimeter-based isolation & photon identification criteria
- measured in a region with high statistics (low $m_{jj} < 150 \text{ GeV}$).

A: Signal region (tight & isolated photon):

•
$$N_A = N_A^{Z\gamma} + N_A^{Zjet} + N_A^{EW}$$

- Extrapolation to the signal phase space:
 - data-to-MC correction factor: $f_{\text{fake}} = \frac{N^{Z_{\text{jet}}}}{N^{Z\gamma}}$

Z+jets shape \Rightarrow the D region is used (after subtracting the other MC contributions)

ABCD method

The number of events N_i in each region i = A, B, C, D can be expressed as:

$$\begin{split} N_A &= N_A^{Z\gamma} + N_A^{Zjet} + N_A^{EW} \\ N_B &= c_B \cdot N_A^{Z\gamma} + N_B^{Zjet} + N_B^{EW} \\ N_C &= c_C \cdot N_A^{Z\gamma} + N_C^{Zjet} + N_C^{EW} \\ N_D &= c_D \cdot N_A^{Z\gamma} + N_D^{Zjet} + N_D^{EW} \end{split}$$

 $c_i = \frac{N_i^{Z\gamma}}{N_i^{Z\gamma}}$ are leakage coefficients

- $N_i \rightarrow$ measured directly from data
- c_i and $N_i^{EW} \rightarrow \text{estimated from MC}$
- the expected contribution from $Z\gamma jj$ -EW process is negligible

$$\begin{split} N_A &= N_A^{Z\gamma} + N_A^{Z/et} + N_A^{EW} \\ N_B &= c_B \cdot N_A^{Z\gamma} + \eta_B \cdot N_A^{Zjet} + N_B^{EW} \\ N_C &= c_C \cdot N_A^{Z\gamma} + \eta_C \cdot N_A^{Zjet} + N_C^{EW} \\ N_D &= c_D \cdot N_A^{Z\gamma} + \eta_B \cdot \eta_C \cdot R_M C \cdot N_A^{Zjet} + N_D^{EW} \end{split}$$

where $\eta_j = N_j^{Zjet} / N_A^{Zjet}$ with j = B, C. For the estimation of the N_D^{Zjet} : $N_D^{Zjet} = R_{MC} \cdot \frac{N_C^{Zjet}}{N_A^{Zjet}} \cdot N_B^{Zjet} = R_{MC} \cdot \eta_B$

Olympia Dartsi

Z+jets and $Z\gamma$ -QCD shapes

Since the analysis was unblinded it is also possible to run the ABCD method directly in the signal region, and compare these results with what was obtained from the fit. The prediction gives:

•
$$N_{fake}^{fit} = 200 \pm 15(stat + sys)$$

• $N_{fake}^{ABCD} = 182 \pm 47(statonly)$

And

•
$$N_{Z\gamma QCD}^{fit} = 867 \pm 30(stat + sys)$$

• $N_{Z\gamma QCD}^{ABCD} = 881 \pm 64(statonly)$

Control distributions - Inclusive region

Olympia Dartsi

Control distributions - QCD-CR region

Olympia Dartsi

Control distributions - b-CR region

Olympia Dartsi

Control distributions - BDT-R region

Olympia Dartsi

Control distributions - centrality

Olympia Dartsi

Final BDT input variables, ranked by importance for improvements in the BDT response.

Rank	Variable	Variable Importance (%)			
1	$p_T(Z\gamma)$	22.3			
2	Centrality	18.2			
3	$m_{Z\gamma}$	18.1			
4	m _{ij}	10.7			
5	$min\Delta R(\gamma, j)$	5.6			
6	$p_T(Z)$	4.7			
7	$p_T(j_1)$	4.0			
8	$\Delta \eta(j1, j2)$	3.7			
9	$\Delta \phi(Z\gamma, jj)$	3.7			
10	$\eta(j_1)$	3.1			
11	mz	3.1			
12	$p_T(l_1)$	2.3			
13	$\Delta R(Z\gamma, jj)$	0.3			

Multivariate approach & Fit procedure

Multivariate approach \rightarrow gives as an output a BDT score distribution.

- \rightarrow signal-like or background-like output
- $\rightarrow\,$ used in the fit to extract the signal strength.

Signal strength:

 $\mu_{\rm EW} = N_{\rm meas}^{\rm EW} / N_{\rm exp}^{\rm EW}$

Systematic Group	EW	QCD	$t\bar{t}\gamma$
Jets	3.5%	8.4%	5.2%
Leptons and photons	3.3%	3.9%	2.5%
Pileup	2.7%	0.02%	3.7%
Theory	1.8%	1.1%	20.7%
Flavour tagging	0.5%	0.8%	8.8%
MC statistic	3.5%	19.1%	44.9%

- extracted with a fit to the data using BDT distributions.
- $\mu_{\rm QCD}$ & $\mu_{t\bar{t}\gamma}$ also extracted
- binned likelihood fit
- expected results → using Asimov pseudo-data

 $\mu_{EW} = 1.00^{+0.19}_{-0.18} \,(\text{stat})^{+0.08}_{-0.10} \,(\text{MCstat})^{+0.09}_{-0.08} \,(\text{syst})^{+0.13}_{-0.10} \,(\text{theo})$

Observed significance 4.1σ (3.8 σ expected)

Generator level cuts applied:

Generation cuts						
Object p_T cut η cut ΔR cut invariant mass σ						
jets	> 15 GeV	< 5.5				
photon	> 10 GeV	< 3.0	$\Delta R(m,k) > 0.1$	$m_{jj} > 0 \text{ GeV}$		
leptons	> 10 GeV	< 3.0	with $m = j, \ell, \gamma$	$m_{\ell\ell} > 40 \text{ GeV}$		
b-quarks	> 15 GeV	< 5.5	and $k = j, \ell$			

The resulting cross sections are:

$$\sigma_{gen}(EW) = 0.0472 \pm 0.0002 \text{ pb}$$

 $\sigma_{gen}(QCD) = 5.0505 \pm 0.0016 \text{ pb}$
 $\sigma_{gen}(INT) = 0.0022 \pm 0.0002 \text{ pb}$

Interference - optimization of the kinematic selection

Olympia Dartsi

Interference of strong and electroweak production

Effect of the interference

The cross section of the 100 samples are averaged and the standard deviation is computed as:

$$\sigma_{\text{gen}} = \sqrt{\frac{\sum_{i} \sigma_{i}}{N}}, \qquad (1)$$
$$\Delta \sigma_{\text{gen}} = \frac{1}{N-1} \sqrt{\sum_{i} (\sigma - \sigma_{i})^{2}}. \qquad (2)$$

In each corresponding phase space:

$$\sigma = \sigma_{\rm gen} \times \frac{N_{\rm passPS}}{N_{\rm tot}} \tag{3}$$

with an uncertainty

$$\Delta \sigma = \sigma \times \sqrt{\left(\frac{\Delta \sigma_{\text{gen}}}{\sigma_{\text{gen}}}\right)^2 + \frac{N_{\text{passPS}}}{N_{\text{tot}}^2} \left(1 - \frac{N_{\text{passPS}}}{N_{\text{tot}}}\right)}$$
(4)

$$w_i = \frac{(\text{EW} + \text{INT})_i}{\text{EW}_i}$$

where *i* indicates the bin number.

The resulting weights are:

BDT bin	weight
(-1,-0.35)	1.0455 ± 0.0015
(-0.35,0.17)	1.0198 ± 0.0016
(0.17,0.6)	1.0005 ± 0.0018
(0.6,0.89)	0.9873 ± 0.0022
(0.89,1)	0.9788 ± 0.0022

Centrality bin	weight
(0, 0.5)	0.9779 ± 0.0014
(0.5,1.5)	1.0122 ± 0.0014
(1.5,5)	1.0914 ± 0.0015

Interference - 3 methods for mismatch

- Method 1 rejects the events which do not have truth values in the phase space of the measurement.
- Method 2 uses for the re-weight the reco BDT value instead of the particle level value.
- Method 3 applies to these events a weight = 1.

Integrated cross-section measurement

N of signal events measured in the BDT-R	$\sigma_{ m obs. \ EW}^{ m fid.} = rac{N_{ m meas.}^{ m EW}}{N_{ m exp.}^{ m EW}} imes \sigma$ $\mu_{EW} imes \sigma_{ m exp. \ E}^{ m fid.}$	fid. exp. _{EW} =
$\sigma_{\text{meas. EW}}^{\text{fid.}} = \frac{N_{\text{meas.}}^{\text{EW}}}{C \times \mathcal{L}} \qquad \sigma_{\text{exp. EW}}^{\text{fid.}} = \frac{N_{\text{exp.}}^{\text{EW}}}{C \times \mathcal{L}}$ event reconstruction Luminosity $C = \frac{N_{\text{exp. reco.}}^{\text{EW}}}{N_{\text{exp. gen.}}^{\text{EW}}}$	Source $Z\gamma jj$ -EW theory modeling $Z\gamma jj$ -QCD theory modeling $i\bar{r}\gamma$ theory modeling $Z\gamma jj$ -QCD interference Jets Pile-up Electrons Muons	$\begin{array}{c} \hline \text{Uncertainty [\%]} \\ +9.6 \\ -6.0 \\ +5.5 \\ +6.1 \\ +6.2 \\ +3.2 \\ +7.6 \\ +7.6 \\ +7.6 \\ +4.3 \\ +0.7 \\ -0.5 \\ +2.8 \\ +2.8 \\ \end{array}$
$\sigma_{\rm exp. \ EW}^{\rm fid.} = 7.75 \pm 0.03 (\rm stat) \pm 0.2 (\rm PDF) \pm 0.4 (\rm scale) \ fb$	Photons Electrons/photons scale	$^{+1.2}_{-0.6}$ $^{+0.5}_{-0.5}$
$\sigma^{\rm fid.}_{\rm obs,\ EW} = 7.75^{+1.47}_{-1.39} ({\rm stat.})^{+0.93}_{-0.99} ({\rm exp.syst})^{+1.01}_{-0.78} ({\rm mod.syst}) \pm 0.15 ({\rm lumi}) \ {\rm fb}$	b-tagging MC statistics Backgrounds normalization	-1.7 +7.6 -8.2 +8.9
	Luminosity Total Systematics	-8.2 2.1 +27.3 -25.0

$$\sigma_{
m obs.\ Z\gamma jj}^{
m fid.} = 71.4 \pm 2.4 \, (
m stat.)_{-6.5}^{+8.9} \, (
m exp.
m syst)_{-17.0}^{+21.1} \, (
m mod.
m syst) \pm 0.15 (
m lumi) \,
m fb$$

Objects	Particle Level Selection		
Leptons	$p_T^{\ell} > 20 \text{ GeV and } \eta^{\ell} < 2.5$		
	Dressed leptons, OS charge		
Photon	$p_T^{\gamma} > 15$ GeV, $ \eta^{\gamma} < 2.37$		
Kinematic	$\Delta R(\ell,\gamma) > 0.4$		
Photon Isolation	$E_T^{cone20}/E_T^\gamma < 0.05$		
FSR cut	$M_{\ell\ell} + M_{\ell\ell\gamma} > 182~{ m GeV}$		
	$M_{\ell\ell} > 40~{ m GeV}$		
Truth Jets/Outgoing Partons	At least two jets with		
(p = outgoing quarks or gluons)	$E_T^{jet} > 50 \text{ GeV}, \eta^{jet} < 4.5$		
	$\Delta R(\ell, jet) > 0.3$		
	$\Delta R(\gamma, jet) > 0.4$		
Search Region	$M_{jj} > 500 \text{ GeV}, N_{bjets} = 0$		
BDT Region	$M_{jj} > 150 \text{ GeV}, N_{bjets} = 0$		

Differential cross-section measurement

• Use of Bayesian iterative method

avoids the "direct attack" of finding the inverse migration matrix

Use of MC simulations

 \rightarrow to construct a map that describes the migration of events (from a generated bin to a reconstructed bin).

Map = response matrix R(migration matrix)

$$\vec{v} = R \cdot \vec{\kappa} + \vec{\beta}$$

Where $\vec{\kappa}$ is the true spectra and \vec{v} the measured one. The true spectra can be obtained from:

$$\vec{\kappa} \equiv R^{-1} \cdot (\vec{v} - \vec{\beta})$$

Unfolding - treatment of Z+jets background

Two different methods are used to calculate the uncertainty of the unfolding procedure.

- very compatible results
- the method 1 is chosen since it is use real data

	migration matrix	Data to unfold
Method 1	SHERPA $v2.2.2 Z\gamma jj$ -QCD and EW	real data
	SHERPA V2.1 $Z\gamma jj$ -QCD and MADGRAPH $Z\gamma jj$ -EW	real data
Method 2	SHERPA $v2.2.2 Z\gamma jj$ -QCD and EW	real data
	SHERPA $v2.2.2 Z\gamma jj$ -QCD and EW	pseudo-data
		(Sherpa v2.1 Zyjj-QCD
		and MADGRAPH $Z\gamma jj$ -EW)

The background processes, namely the Z+jets, $t\bar{t}\gamma$, single top and WZ, are all scaled with an uncertainty of $\pm 20\%$

Differential cross-section measurement - results: $M_{Z\gamma}$

- the migration matrix is diagonal 2 iterations
- purity: 75%-80%
- efficiency: 35%

Differential cross-section measurement - results: P_T^{γ}

- the migration matrix is diagonal 3 iterations
- purity: 70%-85%
- efficiency: 35%

Differential cross-section measurement - results: M_{ii}

- the migration matrix is diagonal 3 iterations
- purity: 70%-85%
- efficiency: 35%

Differential cross-section measurement - systematics

$m_{Z\gamma}$ [GeV]	z_{γ} [GeV] 80 – 150		150 - 250 250		350 – 1	500	≥ 500
$\Delta \sigma_{Z\gamma jj}^{\text{fid.}}$ [fb] 7.55		9.23 3.99		3.99	2.19		1.00
	e Uncerta	inties [%]				
Statistics 13.2		11.1		15.4	24.2		26.7
All systema	tics 34.2	26.4	4	21.5	2	5.0	26.8
Luminosity	2.8	2.0	5	2.5		2.6	2.3
Total	36.7	28.	7	26.4	3	4.8	37.9
Uncorrelate	d syst. 1.0	1.1	2	1.4		1.7	1.3
Unfolding	0.9	0.4	4	0.7		1.1	0.5
Electrons	1.0	0.9	9	1.2		1.6	3.6
Muons	1.9	1.9	9	2.0		2.8	3.2
Photons	1.9	1.1	2	1.1		1.3	1.4
Jets	11.4	7.	3	4.5		8.9	3.8
Z+jets Back	. 29.0	24.3	3	18.3	1	9.7	21.9
Other Red.	Back. 0.2	0.	1	0.1		0.1	0.1
Irred. Backg	round 1.0	1.1	2	1.4		1.7	1.3
Pileup	'ileup 7.7		3.1			1.5	0.5
[Njets	1 - 2	2 – 3	3 – 4	≥ 4]	
	$\Delta \sigma_{Z\gamma jj}^{\text{fid.}}$ [fb]	11.63	6.97	3.75	1.37]	
[Relative	ve Uncertainties [%]]	
ĺ	Statistics	9.9	13.5	19.1	38.0]	
	All systematics	22.0	28.9	51.1	90.7		
	Luminosity	2.6	2.6	2.9	2.8	J	
[Total	24.1	31.9	54.5	98.3]	
[Uncorrelated syst.	2.0	3.9	4.8	8.6]	
	Unfolding	2.1	1.8	1.7	1.9	1	
	Electrons	0.8	0.8	0.9	0.8		
	Muons	1.9	2.0	1.7	2.9		
	Photons	1.2	1.6	1.8	1.3		
	Jets	9.2	7.7	35.0	66.7		
	Z+jets Back.	16.7	26.1	34.3	57.2		
	Other Red. Back.	0.1	0.2	0.1	0.3		
	Irred. Background	2.0	3.9	4.8	8.6		
	Pileup	5.0	3.3	5.4	9.6		

Differential cross-section measurement - systematics

	m_{jj} [GeV]	500 – 1	700 700	- 1000	1000 - 150	00 1500	- 2000	≥ 2000
	m_{ij} [GeV] $\Delta \sigma_{Z\gamma ij}^{fid}$ [fb] Statistics All systematics Luminosity Total	8	.71	9.99	3.5	56	1.38	0.61
		Relative Uncertainties [%]						
	Statistics	1	12.4		19.9		33.4	44.5
All systematics		35.6		21.7	28.6		27.9	46.1
	Luminosity		2.8	2.4	2	.8	2.4	2.4
	Total	3	7.7	24.5	34	.9	43.5	64.1
ĺ	Uncorrelated syst.		4.4	1.9	3	.0	5.7	5.4
ĺ	Unfolding		0.5		0.9		0.3	1.0
	Electrons		0.9	0.7	0	.9	0.8	0.7
Muons			1.7		1.7		3.3	2.4
	Photons		1.7	0.9	1	.6	1.4	1.9
	Jets		9.1	8.4	12	.7	15.5	18.4
	Z+jets Back.	3	2.6	16.0	22	.8	18.2	37.7
	Other Red. Back.		0.2	0.1	0	.2	0.1	0.1
	Irred. Background		4.4	1.9	3	.0	5.7	5.4
	Pileup		5.4	5.2	5	.9	0.9	9.4
P_T^{γ} [GeV]		15 - 25	25 - 35	35 - 50	50 - 65	65 - 85	85 - 120	≥ 120
	$\Delta \sigma_{Z\gamma ii}^{\text{fid.}}$ [fb]	5.12	4.87	3.43	2.72	2.37	1.90	3.30
	$\Delta \sigma_{Z\gamma jj}^{\text{fid.}}$ [fb]	5.12	4.87 Relative	3.43 Uncertain	2.72 ties [%]	2.37	1.90	3.30
-	$\Delta \sigma_{Z\gamma jj}^{\text{fid.}}$ [fb] Statistics	5.12 22.1	4.87 Relative 15.1	3.43 Uncertain 15.7	2.72 ties [%] 20.8	2.37	24.1	3.30
	$\Delta \sigma_{Z\gamma jj}^{\text{fid.}}$ [fb] Statistics All systematics	5.12 22.1 51.0	4.87 Relative 15.1 27.0	3.43 Uncertain 15.7 28.2	2.72 ties [%] 20.8 27.9	2.37 20.8 22.5	1.90 24.1 25.3	3.30 16.0 16.3
;	$\Delta \sigma^{\text{fid.}}_{Z\gamma jj}$ [fb] Statistics All systematics Luminosity	5.12 22.1 51.0 4.1	4.87 Relative 15.1 27.0 2.4	3.43 Uncertain 15.7 28.2 2.3	2.72 ties [%] 20.8 27.9 2.4	2.37 20.8 22.5 2.2	1.90 24.1 25.3 2.5	16.0 16.3 2.3
:	$\Delta \sigma^{\text{fid.}}_{Z \gamma j j j}$ [fb] Statistics All systematics Luminosity Total	5.12 22.1 51.0 4.1 55.6	4.87 Relative 15.1 27.0 2.4 30.9	3.43 Uncertain 15.7 28.2 2.3 32.2	2.72 ties [%] 20.8 27.9 2.4 34.8	2.37 20.8 22.5 2.2 30.6	1.90 24.1 25.3 2.5 34.9	16.0 16.3 2.3 22.8
- - - - -	$\Delta \sigma_{Z\gamma jj}^{\rm fd.}$ [fb] Statistics All systematics Luminosity Total Uncorrelated syst.	5.12 22.1 51.0 4.1 55.6 3.8	4.87 Relative 15.1 27.0 2.4 30.9 2.5	3.43 Uncertain 15.7 28.2 2.3 32.2 3.8	2.72 tties [%] 20.8 27.9 2.4 34.8 2.8	2.37 20.8 22.5 2.2 30.6 3.5	1.90 24.1 25.3 2.5 34.9 3.0	3.30 16.0 16.3 2.3 22.8 3.6
1 1 1	$\Delta \sigma_{Z\gamma j i}^{\rm rd.}$ [fb] Statistics All systematics Luminosity Total Uncorrelated syst. Unfolding	5.12 22.1 51.0 4.1 55.6 3.8 0.9	4.87 Relative 15.1 27.0 2.4 30.9 2.5 0.4	3.43 Uncertain 15.7 28.2 2.3 32.2 3.8 0.7	2.72 ties [%] 20.8 27.9 2.4 34.8 2.8 0.8	2.37 20.8 22.5 2.2 30.6 3.5 0.9	1.90 24.1 25.3 2.5 34.9 3.0 0.1	3.30 16.0 16.3 2.3 22.8 3.6 0.2
: : : : : : : : : : : : : : : : : : :	$\Delta \sigma_{Z\gamma ji}^{\rm td.}$ [fb] Statistics All systematics Luminosity Total Uncorrelated syst. Unfolding Electrons	5.12 22.1 51.0 4.1 55.6 3.8 0.9 1.4	4.87 Relative 15.1 27.0 2.4 30.9 2.5 0.4 1.1	3.43 Uncertain 15.7 28.2 2.3 32.2 3.8 0.7 2.0	2.72 ties [%] 20.8 27.9 2.4 34.8 0.8 3.5	2.37 20.8 22.5 2.2 30.6 3.5 0.9 6.1	1.90 24.1 25.3 2.5 34.9 3.0 0.1 0.9	3.30 16.0 16.3 2.3 22.8 3.6 0.2 1.3
	Δα ^{hd} _{Zjij} [fb] Statistics All systematics Luminosity Total Uncorrelated syst. Unfolding Electrons Muons	5.12 22.1 51.0 4.1 55.6 3.8 0.9 1.4 2.4	4.87 Relative 15.1 27.0 2.4 30.9 2.5 0.4 1.1 1.7	3.43 Uncertain 15.7 28.2 2.3 32.2 3.8 0.7 2.0 2.1	2.72 tites [%] 20.8 27.9 2.4 34.8 2.8 0.8 3.5 1.7	2.37 20.8 22.5 2.2 30.6 3.5 0.9 6.1 1.5	1.90 24.1 25.3 2.5 34.9 3.0 0.1 0.9 1.8	3.30 16.0 2.3 22.8 3.6 0.2 1.3 1.3
	Δα ^{hd} _{Zyjj} [fb] Statistics All systematics Luminosity Total Uncorrelated syst. Uncorrelated syst. Unfolding Electrons Muons Photons	5.12 22.1 51.0 4.1 55.6 3.8 0.9 1.4 2.4 3.6	4.87 Relative 15.1 27.0 2.4 30.9 2.5 0.4 1.1 1.7 1.0	3.43 Uncertain 15.7 28.2 2.3 32.2 3.8 0.7 2.0 2.1 1.0	2.72 ties [%] 20.8 27.9 2.4 34.8 2.8 0.8 3.5 1.7 0.9	2.37 20.8 22.5 2.2 30.6 3.5 0.9 6.1 1.5 0.7	1.90 24.1 25.3 2.5 34.9 3.0 0.1 0.9 1.8 0.7	3.30 16.0 2.3 22.8 3.6 0.2 1.3 1.3 1.3
	Δα ^h d ₂ (fb) Statistics All systematics Luminosity Total Uncorrelated syst. Unfolding Electrons Muons Photons Elets	5.12 22.1 51.0 4.1 55.6 3.8 0.9 1.4 2.4 3.6 12.1	4.87 Relative 15.1 27.0 2.4 30.9 2.5 0.4 1.1 1.7 1.0 7.5	3.43 Uncertain 15.7 28.2 2.3 32.2 3.8 0.7 2.0 2.1 1.0 11.3	2.72 tites [%] 20.8 27.9 2.4 34.8 2.8 0.8 3.5 1.7 0.9 10.6	2.37 20.8 22.5 2.2 30.6 3.5 0.9 6.1 1.5 0.7 6.4	1.90 24.1 25.3 2.5 34.9 3.0 0.1 0.9 1.8 0.7 7.7	3.30 3.30 16.0 16.3 2.3 2.3 22.8 3.6 0.2 1.3 1.9 1.3 1.35 3.5
	Δx b d d d d d d d d d d d d d d d d d d	5.12 22.1 51.0 4.1 55.6 3.8 0.9 1.4 2.4 3.6 12.1 43.4	4.87 Relative 15.1 27.0 2.4 30.9 2.5 0.4 1.1 1.7 1.0 7.5 22.2	3.43 Uncertain 15.7 28.2 2.3 32.2 3.8 0.7 2.0 2.1 1.0 11.3 23.0	2.72 ties [%] 20.8 27.9 2.4 34.8 0.8 3.5 1.7 0.9 10.6 20.8	2.37 20.8 22.5 2.2 30.6 3.5 0.9 6.1 1.5 0.7 6.4 16.7	1.90 24.1 25.3 2.5 34.5 3.0 0.1 0.5 1.8 0.7 7.7 7.7 22.5	3.30 3.30 16.0 16.3 2.3 2.3 22.8 3.6 0.2 1.3 1.9 1.3 3.5 1.4.6
	Ap Bdd, Zyjjj [fb] Statistics All systematics Luminosity Total Uncorrelated syst. Unfolding Electrons Muons Photons Jets Back. Other Red. Back.	5.12 22.1 51.0 4.1 55.6 3.8 0.9 1.4 2.4 3.6 12.1 43.4 0.4	4.87 Relative 15.1 27.0 2.4 30.9 2.5 0.4 1.1 1.7 1.0 7.5 22.2 0.1	3.43 Uncertain 15.7 28.2 2.3 32.2 3.8 0.7 2.0 2.1 1.0 11.3 23.0 0.2	2.72 tites [%] 20.8 27.9 2.4 34.8 0.8 3.5 1.7 0.6 20.8 0.1	2.37 20.8 22.5 2.2 30.6 3.5 0.9 6.1 1.5 0.7 0.7 6.4 16.7 0.1	1.90 24.1 25.3 34.5 34.5 3.0 0.1 1.8 0.7 7.7 7.7 22.5 0.2	3.300 16.0 16.3 2.3 22.8 3.6 0.2 1.3 1.9 1.3 3.5 14.6 0.1
	Δα p ¹ _{27/μ} [fb] Statistics All systematics Luminosity Total Uncorrelated syst. Unfolding Electrons Muons Photons lets Z+jets Back. Other Red. Back. Tred. Background	5.12 22.1 51.0 4.1 55.6 3.8 0.9 1.4 2.4 3.6 12.1 43.4 0.4 3.8	4.87 Relative 15.1 27.0 2.4 30.9 2.5 0.4 1.1 1.7 1.0 7.5 22.2 0.1 2.5	3.43 Uncertain 15.7 28.2 2.3 32.2 3.8 0.7 2.0 2.1 1.0 11.3 23.0 0.2 3.8	2.72 tites [%] 20.8 27.9 2.4 34.8 0.8 3.5 1.7 0.9 10.6 20.8 0.1 2.8	2.37 20.8 22.5 30.6 3.5 0.9 6.1 1.5 0.7 6.4 16.7 0.1 3.5	1.90 24.1 25.3 34.5 34.5 3.0 0.1 1.8 0.7 7.7 7.7 22.5 0.2 3.0	3.30 3.30 16.0 16.3 2.3 2.3 22.8 3.6 0.2 1.3 1.3 3.5 1.3 3.5 1.4.6 0.1 3.6 0.1

Closure Test

Olympia Dartsi

Sample	Bin1: 80-150	Bin2: 150-250	Bin3: 250-350	Bin4: 350-500	Bin5: 500-900	Total
Data	108 ± 9.6	138 ± 8.5	63 ± 12.6	29 ± 18.6	17 ± 24	355
EW SIGNAL Mad	20.6 ± 1.4	30.4 ± 1.15	12 ± 1.7	7.2 ± 2.3	5 ± 2.7	75.3
ZgQCD Sh22	87.9 ± 12.9	108.49 ± 8.76	39.47 ± 13.43	17.5 ± 11.5	15.5 ± 18.2	268.86
Z+jets	18.46 ± 12.92	22.78 ± 8.76	8.28 ± 13.4	3.67 ± 0	3.26 ± 18.2	56.45
ttγ	2.9 ± 15.4	4.85 ± 10.8	2.79 ± 14.04	1.47 ± 18.65	0.74 ± 26.15	12.75
WZ	0.54 ± 14.2	0.73 ± 12.32	0.24 ± 18.06	0.10 ± 30.33	0.083 ± 29.51	1.69
Single Top	0.59 ± 85.02	0.212 ± 70.9	0.18 ± 70.7	0 ± 100	0 ± 100	0.98
$Z\gamma$ Sh21	85.04 ± 9.89	82.24 ± 7.79	33.33 ± 9.03	20.12 ± 10.2	11.6 ± 11.3284	232
Zγ EW Sh22	21.29 ± 3.13	32.5 ± 2.52	13.4 ± 4.1	8.4 ± 5.09	6.45 ± 6.01	82.04

Sample	Bin1: 15-25	Bin2: 25-35	Bin3: 35-50	Bin4: 50-65	Bin5: 65-85	Bin6: 85-120	Bin7: 120-150	Total
Data	86 ± 10.78	72 ± 11.78	54 ± 13.6	34 ± 17	32 ± 17.67	30 ± 18	47 ± 14.58	355
EW SIGNAL Mad	15 ± 1.6	12 ± 1.8	12.7 ± 1.7	8.8 ± 2.2	7.47 ± 2.38	7.52 ± 2.32	11.9 ± 1.79	75.4
ZgQCD Sh22	54.7 ± 19.29	60.2 ± 15.3	50.8 ± 11.4	27.4 ± 15.9	24.2 ± 9.7	23.2 ± 7.8	28.4 ± 4.3	269
Z+jets	11.5 ± 19.3	12.6 ± 15.3	10.67 ± 11.4	5.7 ± 15.9	5.09 ± 9.78	4.87 ± 7.87	5.95 ± 4.27	56.38
ttγ	2.27 ± 15.4	2.2 ± 16.9	2.54 ± 15.6	1.18 ± 21	1.4 ± 21.17	1.04 ± 20.3	2.12 ± 17	12.75
WZ	0.49 ± 15	0.24 ± 13.6	0.39 ± 16	0.14 ± 15	0.073 ± 43	0.18 ± 29	0.168 ± 25.9	1.684
Single Top	0.69 ± 74	0 ± 100	0 ± 100	0.096 ± 100	0.117 ± 100	0 ± 100	0.093 ± 100	0.996
Zγ Sh21	66. ± 12.	36. ± 11.	39.6 ± 12.	24.5 ± 13.7	24. ± 11.	16.6 pm 6.9	25.1269 ± 3.	231.65
Zγ EW Sh22	16. ± 3.6	$12.59 \pm 4.$	13. ± 4.1	9.6 ± 4.5	8.3 ± 5.16	7.5 ± 4.79	14.5 ± 4.02	81.96
Sample	Bin1: 500-700	Bin2: 700-1000	Bin3: 1000-1500	Bin4: 1500-2000	Bin5: 2000-3000	Total		
----------------	-----------------	------------------	------------------	-----------------	--------------------	--------		
Data	$149 \pm 8.$	124 ± 8.98	$55 \pm 13.$	$17 \pm 24.$	10 ± 31.6	355		
EW SIGNAL Mad	16.7 ± 1.5	19.4 ± 1.4	19.2 ± 1.4	9.95 ± 1.9	$10.4 \pm 2.$	75.65		
ZgQCD Sh22	137.5 ± 8.08	70.7 ± 14.8	35. ± 10.9	$11.9 \pm 19.$	$13. \pm 17.7108$	268		
Z+jets	28.8 ± 8.08	14.8 ± 14.8	7.4 ± 10.9	2.5 ± 0	2.8 ± 17.7	56.3		
ttγ	6.4 ± 9.9	2.98 ± 12.35	1.7 ± 16.9	1.05 ± 27.5	0.63 ± 32.1764	12.76		
WZ	0.65 ± 10.5	0.59 ± 13.8	0.3 ± 19.6	$0.098 \pm 47.$	$0.046 \pm 30.$	1.684		
Single Top	$0.69 \pm 74.$	0.096 ± 100	0.21 ± 71.16	0 ± 100	0 ± 100	0.996		
$Z\gamma$ Sh21	$116. \pm 6.26$	71.6 ± 10.5	31.5 ± 10.7	6.95 ± 19.7	5.6 ± 28.2	231.65		
Zγ EW Sh22	16.36 ± 3.38	18.83 ± 3.25	21.87 ± 3.15	$11. \pm 4.7$	13.9 ± 4.04463	81.96		

Sample	Bin1: 1.5-2.5	Bin2: 2.5-3.5	Bin3: 3.5-4.5	Bin4: 4.5-5.5	Total
Data	155 ± 8.03	116 ± 9.28	59 ± 13	25 ± 20	355
EW SIGNAL Mad	40.76 ± 0.99	23.8 ± 1.30	8.06 ± 2.20	3.05 ± 3.58	75.67
ZgQCD Sh22	80.9 ± 14.76	96.28 ± 8.63	51.7 ± 10.37	$40. \pm 10.8$	268.88
Z+jets	16.99 ± 14.76	20.22 ± 8.64	$10.86 {\pm}~10.37$	8.4 ± 0	56.47
ttγ	3.65 ± 12.97	4.70 ± 10.84	2.58 ± 14.67	1.85 ± 18.7	12.78
WZ	0.69 ± 15.5	0.56 ± 10.37	0.25 ± 12.9	0.19 ± 20.5	1.69
Single Top	0.096 ± 100	0.72 ± 72.9	0.099 ± 100	0.093 ± 100	0.99
$Z\gamma$ Sh21	76.5 ± 7.9	81.66 ± 9.36	48. ± 9.00	26.05 ± 13.74	232.21
$Z\gamma EW Sh22$	58.5 ± 1.86	19.35 ± 3.5	3.6 ± 8.58	0.64 ± 16.56	82.09